CO₂ Flux and Metabolism in Estuaries

Wei-Jun Cai

Dept. of Marine Sciences The University of Georgia

10th International Conference on Estuarine Biogeochemistry May 19-22, 2008 Xiamen University, Xiamen, China

Professor WU Yu-Duan (1926-1995)

Wu, Y.-D. and W-J. Cai. 1983. Reduction of Cr(VI) by dissolved organics in estuarine water body. Acta Scientiae Circumstantiae, 3:176-182 (in Chinese).

Outline

>Introduction

CO₂ flux in river-dominated vs. marine dominated estuaries CO₂ in large river plumes Synthesis

Global estuaries are important sources of atmospheric CO₂

Global distribution of estuarine CO₂ research and pattern

Updated based on data compiled by Borges et al. 2005

Global estuaries show a spectrum of freshwater influence

Marine-dominated estuaries

River-dominated estuaries

Outline

>Introduction

➤CO₂ flux in river-dominated vs. marine dominated estuaries

CO₂ in large river inner estuaries and plumes Synthesis

Distance landward of the estuarine mouth (km)

tudy Area

Distance upstream of the estuarine mouth (km)

Distance landward of the estuarine mouth (km)

Gas transfer rate in estuaries Flux = $k_T K_H \cdot (pCO_{2water} - pCO_{2air})$

 $k_{600} = 0.314 \cdot U_{10}^2 - 0.436 \cdot U_{10} + 3.990$

(Jiang et al. 2008, L&O)

Air-water CO₂ fluxes

 $(mmol m^{-2} d^{-1})$

	Tide	Mar 04	May 04	Jun 03	Sep 02	Dec 03	Annual average
and the second second							
Sapelo Sound	HW	11.76	21.57	36.14	45.38	16.96	26.8
$\Lambda = -\lambda$	LW	27.18	48.00	84.26	92.31	29.37	56.1
	Avg.	19.47	34.79	60.20	68.85	23.17	41.4
Doboy Sound	HW	5.95	17.47	35.07	42.57	18.10	24.4
a state and a state of the stat	LW	19.76	43.54	104.58	106.51	29.67	61.0
	Avg.	12.86	30.51	69.83	74.54	23.89	42.7
Altamaha Sound	HW	52.87	24.05	127.58	75.69	27.17	61.0
**********************	LW	158.51	83.32	248.44	157.91	53.09	137.6
	Avg.	105.69	53.69	188.01	116.80	40.13	99.3

<u>Temperature-normalized</u> surface water *p*CO₂ in Marine dominated estuaries

DIC in marsh-surrounded estuaries

DIC~ salinity

Estuarine mixing: riverine vs. non-riverine

Temp-Norm-*p*CO₂ ~ excess DIC relationship

1. Temp Norm *p*CO₂ and exDIC are well correlated in marinedominated estuaries but not in river-dominated.

2. Excess DIC from marsh-estuary controls the seasonal change of pCO_2 in the marinedominated estuaries

CO₂ sources in marine-dominated estuaries

(modified from Jahnke et al. 2003)

Inorganic respiratory products from the intertidal salt marshes play the largest role (Cai and Wang 1998; Cai et al. 1999; Wang and Cai 2004)

<u>Temperature-normalized</u> pCO₂ in riverdominated estuaries

Temp. normalized *p*CO₂

River discharge rates

CO₂ contributed from river or marsh

$$\Delta [CO_{2}]_{marsh} = [CO_{2}]_{i} - [CO_{2}]_{mixing w/R} \qquad DIC_{mixing w/o} = \frac{S_{i}}{S_{ocean}} \cdot DIC_{ocean}$$

$$\Delta [CO_{2}]_{river} = [CO_{2}]_{mixing w/R} - [CO_{2}]_{mixing w/0} \qquad DIC_{mixing w/R} = \frac{S_{i}}{S_{ocean}} \cdot DIC_{ocean} + (1 - \frac{S_{i}}{S_{ocean}}) \cdot DIC_{river}$$

CO₂ contributed from river and marsh

Flux contributed by the river input of DIC

Air-water CO₂ flux:

$$\mathbf{F} = \mathbf{k} \cdot ([\mathbf{CO}_{2\mathbf{w}}] - [\mathbf{CO}_{2\mathbf{a}}]) \tag{1}$$

Differentiate both sides:

 $\Delta \mathbf{F} = \mathbf{k} \cdot \Delta [\mathrm{CO}_{2_{\mathrm{W}}}] \tag{2}$

Since we already know CO_2 concentration that is contributed by the river; the fluxes contributed by the river can then be calculated according to (2).

River contributed CO₂ vs. flux difference

Conclusions

The surface water *p*CO₂ in the **river**dominated estuaries is much higher than that in the marine-dominated estuaries.

The CO₂ loading from freshwater runoff is believed to be responsible for the extra higher CO₂ fluxes in the river-dominated estuaries. (explain why river has high CO₂)

Outline

>Introduction

CO₂ flux in river-dominated vs. marine dominated estuaries CO₂ in large river plumes Synthesis

Mississippi River (MR) plume

Surface water pCO₂ & salinity distribution, MR plume

10

June 06 30.5 500 pCO2 Jun 2006 30 400 29.5 300 pCO_2 29 200 28.5 100 28 -93 -92 -91 -90 -89 -88 -87 30.5 Sal Jun 2006 30 30 29.5 20 29 Sal 28.5

28

27.5└ -94

-93

-92

-91

-90

-89

-88

-87

- 1. High pCO₂ in river end
- 2. Very low pCO2 in mid sal
- 3. High in high sal zone

Mississippi River plume, June 2003

- Great DIC removal & nutrient removal at S=15.
- 2. No TA removal.
- 3. At S=15, max∆DIC

~ 430 uM. Appling a Redfield ratio of 6.6, we would predict a max NO₃ removal of 65 uM and maxPO4 removal of 4.1 uM.

August 2004

 Δ DIC = 320 uM, Δ TA=210 uM DIC removal due to OC = 320-210/2 =215 uM Predicted NO₃ removal = 33 uM

October 2005 mixing

Mississippi River discharge at Tarbert Landing

TA removal (& possibly coccolith bloom) occurs only at low discharge time.

pCO₂ in the Changjiang plume, East China Sea (Tsunogai et al. 1999)

 pCO_2 in the East China Sea in summer 1998 during the great flood period (Results from the Chinese JGOFS, L. Zhang pers. comm.)

Amazon plume

Cooley et al. GBC : 21, GB3014, doi:10.1029/2006GB002831, 2007

Mixing in the Amazon River plume

J.F. Ternon et al. / Marine Chemistry 68 (2000) 183-201

190

BO CONTRACTOR PLANE Alkalinity Alkalini

Amazon River water has low TA & low buffer capacity; in contrast, MR water has high TA and high buffer capacity.

Outline

>Introduction

>CO₂ flux in river-dominated vs. marine dominated estuaries

>CO₂ in large river inner estuaries and plumes

Synthesis

Estuaries on which the global estuarine CO₂ fluxes were based are mainly river-dominated estuaries

TABLE 1. Range of pCO_2 , airwater CO_2 fluxes, and gas transfer velocity parameterization (k) in coastal environments. The numbers in parentheses correspond to site identification in Fig. 1. Values in bold are for environments with full annual coverage. k wind parameterization after Carini et al. (1996) = C; Liss and Merlivat (1986) = LM; Nightingale et al. (2000) = N; Raymond et al. (2000) = R; Raymond and Cole (2001) = RC; Wanninkhof (1992) = W; Tans et al. (1990) = T; Wanninkhof and McGillis (1999) = WMcG. D denotes direct measurements with a floating dome.

Site	°E .	'N	pCO ₂ (ppm)	Air-Water CO ₂ Fluxes (mol C m ⁻² yr ⁻¹)		k	Ref.	
Inner estuaries								
Randers Fjord (1)	10.3	56.6	220-3400	5	4.4	D	Gazeau et al. (2004a)	
Elbe (2)	8.8	53.9	580-1100		53.0	D	Frankignoulle et al. (1998)	
Ems (3)	6.9	53.4	560-3755		67.3	D	Frankignoulle et al. (1998)	
Rhine (4)	4.1	52.0	545-1990		39.7	D	Frankignoulle et al. (1998)	
Thames (5)	0.9	51.5	505-5200		73.6	D	Frankignoulle et al. (1998)	
Scheldt (6)	3.5	51.4	125-9425		63.0	D	Frankignoulle et al. (1998)	
Tamar (7)	-4.2	50.4	380-2200		74.8	8.0 cm h ⁻¹	Frankignoulle et al. (1998)	
Loire (8)	-2.2	47.2	630-2910		64.4	13.0 cm h ⁻¹ / D	Abril et al. (2003, 2004)	
Gironde (9)	-1.1	45.6	465-2860		30.8	D	Frankignoulle et al. (1998)	
Douro (10)	-8.7	41.1	1330-2200		76.0	D	Frankignoulle et al. (1998)	
Sado (11)	-8.9	38.5	575-5700		31.3	D	Frankignoulle et al. (1998)	
York River (12)	-76.4	37.2	350-1900		6.2	R	Raymond et al. (2000)	
Satilla River (13)	-81.5	31.0	360-8200		42.5	12.5 cm h ⁻¹	Cai and Wang (1998)	
Hooghly (14)	88.0	22.0	80-1520		5.1	W	Mukhopadhyay et al. (2002)	
Godavari (15)	82.3	16.7	220-500		5.5	RC	Bouillon et al. (2003)	
Mandovi-Zuari (16)	73.5	15.3	500-3500		14.2	W	Sarma et al. (2001)	

(Table from Borges et al. 2005)

The air-water CO_2 flux of the global estuaries (0.4 Pg C/yr) is quite uncertainty.

Marine-dominated estuaries cover a large portion of the global estuaries

Region	No.	Sound	Flow ratios (average annual)	Туре	Fluvial Drainage (mi ²)	Estuarine Drainage (mi ²)	Flow rates (ft ³ /s)	Total Area of the nor riverine (mi ²)	Total Area of riverine (mi ²)	\mathcal{I}
Northeast	1.01	Passamaquoddy Bay	0.004	Ν	NA	3200	6.2	157		
	1.02	Englishman Bay	0.003	Ν	NA	883	1.6	76		
	1.03	Narraguagus Bay	0.002	Ν	NA	416	0.9	70		
	1.04	Blue Hill Bay	0.002	Ν	NA	825	1.3	115		
	1.05	Penobscot Bay	0.007	Y	6250	3160	16.1		361	
	1.06	Muscongus Bay	0.002	Ν	NA	346	0.6	72		
	1.07	Sheepscot Bay	0.036	Y	3920	6150	17.6		103	
	1.08	Casco Bay	0.002	N	NA	1159	2.1	164		
	1.09	Saco Bay	0.039	N	NA	1771	3.6	17		
	1.10	Great Bay	0.039	N	NA	950	2.0	15		
	1.11	Merrimack River	0.319	Y	2680	2300	8.4		6	
	1.12	Boston Bay	0.005	N	NA	670	1.8	69		
	1.13	Cape Cod Bay	0.006	N	NA	771	1.8	548		
	1.14	Buzzards Bay	0.002	N	NA	576	1.2	228		
	1.15	Narragansett Bay	0.008	Y	451	1330	3.2		165	
	1.16	Gardiners Bay	0.003	Ν	NA	400	0.7	197		
	1.18	Great South Bay	0.011	Ν	NA	845	0.7	151		
	1.19	Hudson River/Raritan Bay	0.046	Y	8037	8467	26.7		298	
	1.20	Barnegat Bay	0.033	Ν	NA	1350	2.3	102		
	1.21	Delaware Bay	0.009	Y	8700	4750	19.8		768	
	1.22	Chincoteague Bay	0.012	N	NA	300	0.4	137	_	
Southeast	2.01	Albemarle Sound	0.216	Y	12434	5804	24.8		922	
	2.03	Bogue Sound	0.012	Ν	NA	680	1.3	102		
	2.04	New River	0.058	Ν	NA	470	0.8	32		
	2.05	Cape Fear River	0.128	Y	4750	4340	10.1		38	
	2.06	Winyah Bay	0.301	Y	8578	9511	20.4		30	
	2.07	Charleston Harbor	0.150	Y	14582	1202	16.1		37	
	2.08	North and South Santee Rivers	0.138	Y	14582	718	2.7		9	
	2.09	St. Helena Sound	0.015	Y	3242	1537	4.6		85	
	2.10	Broad River	0.002	N	NA	1000	0.9	100		
	2.11	Savannah River	0.092	Y	9484	916	12.8		33	
	2.12	Ossabaw Sound	0.022	Y	3240	1490	3.0		33	
	2.13	St. Catherines/Sapelo Sound	0.003	Ν	NA	965	0.8	75		
	2.14	Altamaha River	0.283	Y	12690	1510	14.9		15	
	2.15	St. Andrew/St. Simons Sound	0.008	Y	773	3260	2.5		72	
	2.16	St. Johns River	0.185	Y	2860	6500	7.8		258	
	2.17	Indian River	0.027	Ν	NA	1246	1.4	280		
	2.18	Biscayne Bay	0.013	Ν	NA	1850	3.2	269		

2976

3233

Conclusion on the current flux estimates

- > The air-water CO_2 flux of the global estuaries (0.4 Pg C/yr) is quite uncertainty and is likely **overestimated**.
- > Marshes and mangroves are highly productive ecosystems that are not yet in the picture.
 - Productivity: 1275 gC/m²/yr (Woodwell 1973)
 - Area:383,700 km²
 - Total production or CO_2 fixation: 0.49 Pg C/yr (or 41 Tmol/yr).
- Net sea- (or ground-) air CO₂ flux in estuarine and nearshore systems cannot be constrained with any satisfaction at this stage, but is probably a small CO₂ sink.

metabolism in estuaries

- > PP (total) = 35 Tmol/yr (Smith & Hollibaugh 1993)
- Resp (pelagic) ~ 86 mmol/m²/d (Hopkinson 2002?)
- Resp (benthic) = 34 mmol/m²/d (Hopkinson 2002?)
- Resp (total) ~120 mmol/m²/d = 60 Tmol/yr (Hopkinson 2002?)

Estuarine is heterotrophic, burning more OC than it produced.

C budget & metabolism in estuaries

Latitudinal distribution of HCO₃ in global rivers

Cai et al. 2008, CSR (in press)

Acknowledgements

- □ Funding agency:
 - NSF: OCE-9982133; OCE-0425153; OCE-0752110.
 - NOAA: NA050AR4311161
 - NASA: NNG05GD22G
- Associates: Yongchen Wang, Li-Qing Jiang, Feizhou Chen, Justin Hartmann, Wei-Jen Huang, & Xianghui Guo